2,619 research outputs found

    Hydrodynamical instability of extragalactic stratified jets

    Get PDF
    The recent development of tomographic analysis of radio data shows the presence of sheaths around several extragalactic jets. We have studied the Kelvin-Helmholtz instability of such stratified jets, describing them as inner relativistic beams embedded in slower plasma envelopes. We find that the para- meters of the envelope generally determine the Kelvin-Helmholtz properties of the jet which thus appears isolated from any ambient external medium.Comment: LaTeX, 5 pages, 1 figure and crckapb.sty, epsf.sty included, To appear in the proceedings of Girona Conference ``Blazars, Black Holes and Jets'', 9-12 September 1996, Girona, Spai

    Optimal correction of independent and correlated errors

    Full text link
    We identify optimal quantum error correction codes for situations that do not admit perfect correction. We provide analytic n-qubit results for standard cases with correlated errors on multiple qubits and demonstrate significant improvements to the fidelity bounds and optimal entanglement decay profiles.Comment: 11 pages, 4 figures. Updated to include fidelity analysi

    Linking radio and gamma ray emission in Ap Librae

    Full text link
    Ap Lib is one of the rare Low Synchrotron Peaked blazars detected so far at TeV energies. This type of source is not properly modelled by standard one-zone leptonic Synchrotron-self-Compton (SSC) emission scenarios. The aim of this paper is to study the relevance of additional components which should naturally occur in a SSC scenario for a better understanding of the emission mechanisms, especially at very high energies (VHE). Methods. We use simultaneous data from a multi-wavelength campaign of Planck, Swift-UVOT and Swift-XRT telescopes carried out in February 2010, as well as quasi-simultaneous data of WISE, Fermi and H.E.S.S. taken in 2010. The multi-lambda emission of Ap Lib is modelled by a blob-in-jet SSC scenario including the contribution of the base of the VLBI extended jet, the radiative blob-jet interaction, the accretion disk and its associated external photon field. We show that signatures of a strong parsec-scale jet and of an accretion disk emission are present in the SED. We can link the observationnal VLBI jet features from MOJAVE to parameters expected for a VHE emitting blob accelerated near the jet base. The VHE emission appears to be dominated by the inverse-Compton effect of the blob relativistic electrons interacting with the jet synchrotron radiation. In such scenario Ap Lib appears as an intermediate source between BL Lac objects and Flat Spectrum Radio Quasars. Ap Lib could be a bright representative of a specific class of blazars, in which the parsec-scale jet luminosity is no more negligible compared to the blob and contributes to the high energy emission via inverse Compton processes.Comment: 12 pages, 7 figures, Accepted for publication in A&

    Extended two-level quantum dissipative system from bosonization of the elliptic spin-1/2 Kondo model

    Full text link
    We study the elliptic spin-1/2 Kondo model (spin-1/2 fermions in one dimension with fully anisotropic contact interactions with a magnetic impurity) in the light of mappings to bosonic systems using the fermion-boson correspondence and associated unitary transformations. We show that for fixed fermion number, the bosonic system describes a two-level quantum dissipative system with two noninteracting copies of infinitely-degenerate upper and lower levels. In addition to the standard tunnelling transitions, and the transitions driven by the dissipative coupling, there are also bath-mediated transitions between the upper and lower states which simultaneously effect shifts in the horizontal degeneracy label. We speculate that these systems could provide new examples of continuous time quantum random walks, which are exactly solvable.Comment: 7 pages, 1 figur

    Critical Temperature and Tunneling Spectroscopy of Superconductor-Ferromagnet Hybrids with Intrinsic Rashba-Dresselhaus Spin-Orbit Coupling

    Full text link
    We investigate theoretically how the proximity effect in superconductor/ferromagnet hybrid structures with intrinsic spin-orbit coupling manifests in the density of states and critical temperature. To describe a general scenario, we allow for both Rashba and Dresselhaus type spin-orbit coupling. Our results are obtained via the quasiclassical theory of superconductivity, extended to include spin-orbit coupling in the Usadel equation and Kupriyanov--Lukichev boundary conditions. Unlike previous works, we have derived a Riccati parametrization of the Usadel equation with spin-orbit coupling which allows us to address the full proximity regime. First, we consider the density of states in both SF bilayers and SFS trilayers, where the spectroscopic features in the latter case are sensitive to the phase difference between the two superconductors. We find that the presence of spin-orbit coupling leaves clear spectroscopic fingerprints in the density of states due to its role in creating spin-triplet Cooper pairs. Unlike SF and SFS structures without spin-orbit coupling, the density of states in the present case depends strongly on the direction of magnetization. We show that the spin-orbit coupling can stabilize singlet superconductivity even in the presence of a strong exchange field h≫Δh \gg \Delta. This leads to the possibility of a magnetically tunable minigap: changing the direction of the exchange field opens and closes the minigap. We also determine how the critical temperature TcT_c of an SF bilayer is affected by spin-orbit coupling and demonstrate that one can achieve a spin-valve effect with a single ferromagnet. We find that TcT_c displays highly non-monotonic behavior both as a function of the magnetization direction and the type and direction of the spin-orbit coupling, offering a new way to exert control over the superconductivity of proximity structures.Comment: 25 pages, 21 figures. Accepted for publication in Phys. Rev.

    Quasiclassical theory for the superconducting proximity effect in Dirac materials

    Full text link
    We derive the quasiclassical non-equilibrium Eilenberger and Usadel equations to first order in quantities small compared to the Fermi energy, valid for Dirac edge and surface electrons with spin-momentum locking, as relevant for topological insulators. We discuss in detail several of the key technical points and assumptions of the derivation, and provide a Riccati-parametrization of the equations. Solving first the equilibrium equations for S/N and S/F bilayers and Josephson junctions, we study the superconducting proximity effect in Dirac materials. Similarly to related works, we find that the effect of an exchange field depends strongly on the direction of the field. Only components normal to the transport direction lead to attenuation of the Cooper pair wavefunction inside the F. Fields parallel to the transport direction lead to phase-shifts in the dependence on the superconducting phase difference for both the charge current and density of states in an S/F/S-junction. Moreover, we compute the differential conductance in S/N and S/F bilayers with an applied voltage bias, and determine the dependence on the length of the N and F regions and the exchange field.Comment: 13 pages, 5 figures. Accepted for publication in Phys. Rev.

    Observing the sky at extremely high energies with the Cherenkov Telescope Array: Status of the GCT project

    Get PDF
    The Cherenkov Telescope Array is the main global project of ground-based gamma-ray astronomy for the coming decades. Performance will be significantly improved relative to present instruments, allowing a new insight into the high-energy Universe [1]. The nominal CTA southern array will include a sub-array of seventy 4 m telescopes spread over a few square kilometers to study the sky at extremely high energies, with the opening of a new window in the multi-TeV energy range. The Gamma-ray Cherenkov Telescope (GCT) is one of the proposed telescope designs for that sub-array. The GCT prototype recorded its first Cherenkov light on sky in 2015. After an assessment phase in 2016, new observations have been performed successfully in 2017. The GCT collaboration plans to install its first telescopes and cameras on the CTA site in Chile in 2018-2019 and to contribute a number of telescopes to the subsequent CTA production phase.Comment: 8 pages, 7 figures, ICRC201
    • …
    corecore